Vitelline envelope genes of the yellow fever mosquito, Aedes aegypti.
نویسندگان
چکیده
Vitelline envelope genes from the mosquito Aedes aegypti were analyzed with respect to their DNA sequences, genomic representation, temporal and spatial expression profiles and response to 20-hydroxyecdysone. Genomic clones of three vitelline envelope genes, 15a-1, 15a-2 and 15a-3 were isolated. Southern analysis indicates that all three genes are represented by a single copy in the genome. The deduced amino acid sequences of all three vitelline envelope genes contain a conserved region of 46 residues that overlaps with a region that is conserved in four Drosophila melanogaster vitelline envelope genes. DNA was sequenced flanking the 15a-1, 15a-2 and 15a-3 coding regions. A 360 bp sequence 5' of the 15a-2 coding region was identified with 72% identity to a sequence upstream of the Ae. aegypti VgA1 vitellogenin gene. The temporal patterns of 15a-1, 15a-2 and 15a-3 expression, as determined by Northern analysis, were similar. The spatial patterns of expression, as determined by whole-mount in situ hybridization, differed between the three genes. 15a-1 and 15a-3 were only expressed in the middle and posterior regions of the follicle, while 15a-2 was also expressed at the anterior region. Vitelline envelope gene expression was higher in ovaries that were dissected at 0, 2 and 10 h following a blood meal and then incubated in vitro for 10 h in medium containing 10(-5) M 20-hydroxyecdysone, compared to ovaries that were incubated without hormone.
منابع مشابه
Phylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia
Background: Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. Objectiv...
متن کاملAlterations in the Aedes aegypti Transcriptome during Infection with West Nile, Dengue and Yellow Fever Viruses
West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV...
متن کاملTransmission of African Horse-Sickness by Means of Mosquito Bites and Replication of the Virus in Aedes aegypti
متن کامل
Polyamines, and effects from reducing their synthesis during egg development in the yellow fever mosquito, Aedes aegypti.
Development of eggs after a blood meal in the yellow fever mosquito Aedes aegypti involves hormonal changes, synthesis of nucleic acids, activation of the digestive enzyme trypsin, and production of the yolk protein vitellogenin. Polyamines have been implicated in growth processes and were here examined for possible involvement during egg development. The data suggest that polyamines are import...
متن کاملYellow Fever Virus Infectivity for Bolivian Aedes aegypti Mosquitoes
The absence of urban yellow fever virus (YFV) in Bolivian cities has been attributed to the lack of competent urban mosquito vectors. Experiments with Aedes aegypti from Santa Cruz, Bolivia, demonstrated infection (100%), dissemination (20%), and transmission of a Bolivian YFV strain (CENETROP-322).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Insect biochemistry and molecular biology
دوره 28 12 شماره
صفحات -
تاریخ انتشار 1998